Descending from on high: Lyman series cascades and spin-kinetic temperature coupling in the 21cm line

> Jonathan Pritchard Steve Furlanetto (Caltech)

astro-ph/0508381

21cm + Wouthysen-Field Effect

Higher Lyman Series

- Two possible contributions
 - Direct pumping: Analogy of the W-F effect
 - Cascade: Excited state decays through cascade to generate Ly α
- Direct pumping is suppressed by the possibility of conversion into lower energy photons
 - Ly α scatters ~10⁶ times before redshifting through resonance
 - Ly n scatters ~1/P_{abs}~10 times before converting
 ⇒ Direct pumping is not significant
- Cascades end through generation of Ly α or through a two photon decay
 - Use basic atomic physics to calculate fraction recycled into Ly $\boldsymbol{\alpha}$
 - Discuss this process in the next few slides...

Lyman β

Lyman y

ŶŶ

E

•Cascade via 3S and 3D levels allows production of Lyman α •f_{recycle, γ}=0.26

TASC 28/10/2005

Lyman δ

ŶŶ

Going to higher n offers more routes to the 2P level
f_{recycle,δ}=0.31
Following individual decay paths gets complicated!

Calculating Recycling Fractions

Lyman Series Cascades

α		β	γ δ	\propto)
					ν
~~	/		`		<u>Total</u>
No. Photons: (pop III)	2670	965	451	810	4896
$f_{recycle}$:	1.0	0	0.26	0.35	0.62
Ly α Contribution:	2670	0	118	268	3056
Shell size $@z = 20$ (Mpc):	278	90	40	22	

TASC 28/10/2005

T_b Fluctuations

Galaxies @z=20

Density inhomogeneities

Poisson fluctuations

пп $[T_{b}|[k^{3}P_{\mu^{s}}(k)/2\pi^{2}]^{1/2}$ [mK] 1 n_{max}=23 $n_{max} = 2$ 2βΡ, 0.1 k, \mathbf{k}_{HII} $[T_{b}|[k^{3}P_{p}(k)/2\pi^{2}]^{1/2} [mK]$ 10 1 0.1 0.01 0.01 10² 0.1 10 10^{3} Wavenumber [1/Mpc]

Barkana & Loeb 2004

TASC 28/10/2005

Conclusions

- Including correct atomic physics is important for extracting astrophysical information from 21cm fluctuations
- Cascade generated Lyman α photons increase the theoretical signal from the first galaxies, but not as much as has previously been thought
- ~62% emitted Lyman series photons recycled into Lyman $_{\alpha}$
- Recycling fractions are straightforward to calculate and should be included in future work on this topic
- Basic atomic physics encoded in characteristic scales of Lyman series photon horizons
- For more information see: astro-ph/0508381