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Overview
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21 cm basics

What effect do Lya and X-rays have on the 21cm signal?

How well do analytic models of the 21 cm signal match
simulations?
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R 21 cm basics

eHI hyperfine structure eUse CMB backlight to probe 21cm transition
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s Wouthuysen-Field effect

Hyperfine structure of HI
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Thermal History
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e 21 cm fluctuations

Brightness ~ Baryon Neutral Gas W-F Velocity
temperature  Density fraction Temperature Coupling gradient
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R Sources of radiation

Lya: Three contributions to Lya flux:
continuum & injected from stars + x-ray

Shell size @z = 20 (Mpc): 278

Lya heating typically small than that of X-rays

X-rays from mini-quasars, starburst galaxies, IC
X-ray photoionization leads to 2" ionization, heating, Lya
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e Source properties very uncertain

Fluctuations:

e Despite long mfp significant fluctuations due
to 1/r2 flux dependence and clustering of sources

Barkana & Loeb 2005,
Pritchard & Furlanetto 2006
Hirata 2006

Chen & Miralde-Escude 2006
Chuzhoy & Shapiro 2006

Chen & Miralde-Escude 2006,
Pritchard & Furlanetto 2007,
Zaroubi+ (2007)

Pritchard & Loeb 2008




Power spectra

bias source properties density
> « >

< > <

1 IIIIIIII I IIIIIIII I IIIIIIII 1 IIIIIIII

A

—
o

LI IIIIII]

[T,/ (k) [mK]

T T lllllll

IIIII

L nl ||||\||||| L

0.1 |
k [Mpc™']

e Fluctuations in Lya or X-rays both
add power on large scales
e Largest scales gives bias of sources
e Intermediate scales says something
about sources
e.g. stellar spectrum vs power law
e T fluctuations say something about
thermal history

Barkana & Loeb 2004
Chuzhoy, Alvarez, & Shapiro
2006

Pritchard & Furlanetto 2007

X-rays

IIII T IIIIIIII T llllllll T T TTTITm

T>T,

0.01 0.1 1
k [Mpc-!]

._.
o
)




Signal decomposition

Pritchard &
Loeb 2008
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Peculiar Angular separation by & Ali 2004
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Reionization simulation

e Simulation techniques for reionization well developed
e Boxes well matched to typical bubble sizes ~1-10Mpc

e Including Lya and X-rays complicated by long mfp & need to track
multiple frequencies and redshifting -> numerically expensive

(Baek+ 2009 - Included Lya radiative transfer into course 100 Mpc box, no X-rays)

L=100 Mpc/h Shin+ 2007
NDM=28803 Trac & Cen 2007
Mhalo= 108 Msol/h Santos+ 2008
RT on 3603 grid

Resolves halos capable
of atomic cooling
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s Including other radiation fields

oApproach: Santos, Amblard, Pritchard, Trac, Cen, Cooray 2008

=Implement semi-analytic procedure for fluxes
using SFR from N-body simulation

= Extract sources on time slices and integrate to get Lya & X-ray flux

=Convolution can be evaluated relatively quickly

=Source parameters extrapolated from low z sources
- Pop II + III stars -> reionization at z=6
- X-ray emission from galaxies

= Get coupling and heating from fluxes




Simplifications

e Propagate in mean density IGM
= Underestimates heating close to source & overestimates far away

e Propagate Lyman photons until redshift to line center
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e Both will tend to increase power on small scales
= important for details, but not overall picture




Full simulation

z=23.6272 xHI=1.000

Movie courtesy of Mario Santos




Evolution of signal

Mean signal Power spectrum
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e T fluctuations significantly shift mean T; at moderate z
e Different fluctuations important at different times
e On smallest scales evolution mostly modulated by T,




6T, (mK) z = 20.60

z=20.60 x,=0.0002 theory
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Dotted = d+x, Dot-dashed = +Lya
Dashed = +X-ray Solid= All

e Analytic model underestimates SFR slightly
-> |less Lya -> weaker signal
e In both cases Lya fluctuations flatten P(k)




6T, (mK) z = 15.24

y (Mpe/h)

theory -

-40 -20 0
simulation x (Mpc/h)

Dotted = d+x, Dot-dashed = +Lya
Dashed = +X-ray Solid= All
e Lya fluctuations match well
e T fluctuations disagree somewhat
-> cross correlation between T and density too strong
on small scales in analytic model
e Modeling needs improvement




Temperature

6T, (mK) z = 10.00
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. . : Furlanetto, Zaldarriaga,
e Tonization fluctuations agree very well with FZH model ermauist 2004
e Temperature fluctuations more important in simulation
-> large scales still close to CMB temperature

-> contributes with opposite sign to ionization so power reduced
(hottest regions ionized)




Ionization
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eGood agreement except on largest scales
eBubble size comparable to box size -> problems

eEchoes previous comparisons of FZH model for ionization Zahn+ 2007
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e Conclusions

e Have told a simple story, but large uncertainties with sources

e[ earn about sources during/preceding reionization from fluctuations
in Lya and X-ray flux from details of power spectra
-> constrain faint population of early sources
-> thermal history

e Results suggest weak separation of different fluctuations
-> details parameter dependant

e Temperature fluctuations can be important at even low neutral fractions
may need both Lya heating & X-ray heating

e Theory and simulation agrees reasonably well
-> fast method for including relevant physics in simple way
-> need for RT of Lya and X-rays in cosmological simulations
-> analytic calculations valuable for fast exploration of parameters

e Using 21 cm fluctuations to understand early stages of reionization requires
understanding contribution of Lya and X-rays




Transition redshifts

Temperature
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e Onset of Lya fluctuations less parameter dependent
e Lya coupling precedes heating same for fluctuations Pritchard
e X-rays couple & Lya photons heat (if no X-rays) & Loeb 2008







omparison of FIuctuations
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Higher order terms

e Jonization fluctuations are not small 6X,~1

e Higher order (in X) terms modify P21 on all scales
- important to include in modeling

Py (k) = TZ [ firPs.s (k) + Pe, o, (k) — 2furPe, 5(k)
+2P, 5.2, (k) — 2fu1Pr.5.5(k) + Pris.z.5(k)]
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Lidz+ 2007
Santos+ 2008




Temporal evolution

Reionization
<+—>

Signal from dense
neutral clumps at
low z

Chang et al. 2007
Wyithe & Loeb 2007

Pritchard

5 N 0 & Loeb 2008




Simulation + Lya +X-rays

= B0 + 5:1:5:131{1 + ﬁT(STk + Ba0a
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Lya & T fluctuations
can be important




