In the beginning of the Dark Ages, electrically neutral hydrogen gas filled the universe. As stars formed, they ionized the regions immediately around them, creating bubbles here and there. Eventually these bubbles merged together, and intergalactic gas became entirely ionized.

Lessons from constraining the global 21 cm signal in the presence of foregrounds

Overview

- 21 cm global signal physics
- Foregrounds and experiments
- Reionization
- First galaxies

Assume perfect calibration. What information survives foreground removal?

Known unknowns...

Discovery space

KISS 2010

COBE-FIRAS

black body

WMAP

anisotropies

Jonathan Pritchard

 $\delta_{T_b} = \delta_{T_b}$ $\delta_{T_b} = \beta \delta$ - LOFAR

 $egin{array}{lll} eta_lpha\delta_lpha-\delta\ -\,\delta_{\partial v_\perp}-\delta \end{array}$

EDGES

LOFAR MWA

Fluctuations

global signal

Jonathan Pritchard

21 cm basics

Precisely measured transition from water masers

$$\nu_{21cm} = 1,420,405,751.768 \pm 0.001 \,\mathrm{Hz}$$

Hyperfine transition of neutral hydrogen

Spin temperature describes relative occupation of levels

$$n_1/n_0 = 3 \exp(-h\nu_{21\rm cm}/kT_s)$$

Useful numbers:

 $\begin{array}{l} 200 \, \mathrm{MHz} \rightarrow z = 6 \\ 100 \, \mathrm{MHz} \rightarrow z = 13 \\ 70 \, \mathrm{MHz} \rightarrow z \approx 20 \end{array}$

 $t_{\text{Age}}(z=6) \approx 1 \,\text{Gyr}$ $t_{\text{Age}}(z=10) \approx 500 \,\text{Myr}$ $t_{\text{Age}}(z=20) \approx 150 \,\text{Myr}$

 $t_{\rm Gal}(z=8) \approx 100 \,{\rm Myr}$

Spin temperature

• 21 cm spin temperature interpolates between the two depending on the strength of coupling

Alternative scenarios

Exotic physics

- 21 cm signal driven by coupling and heating
- Disentangling different physics requires shape details
- Much easier to pick out key features

Galaxy at 100 MHz

Sky at 100 MHz dominated by galactic foregrounds

de Oliveira-Costa+ 2008

dipole response at 100 MHz

Response of ideal dipole at MWA site averaged over a day

Few independent pixels on the sky but possibly can exploit

KISS 2010

Jonathan Pritchard

EDGES

Global signal can be probed by single dipole experiments e.g. EDGES - Bowman & Rogers 2008 CoRE - Ekers+ DARE - PI: Burns

Switch between sky and calibrated reference source

Foregrounds convolved with instrumental response - calibration

Bowman & Rogers 2008

KISS 2010

Residuals

KISS 2010

Frequency subtraction

Fisher matrix

Assume full sky experiment covering range [numin,numax] in N channels of width B and integrating for tint $\sigma_i^2 = \frac{T_{\rm sky}^2}{Bt_{\rm int}}$ 8.05 8.05 Thermal noise N 8.00 N 8.00 7.95 7 95 0.01 0.02 0.03 0.04 0.8 0.9 1.0 1.1 1.2 $T_{\rm sky} = T_{\rm fg} + T_b.$ Sky model T₂₁ [K] Δz 5×10 0.04 $< a_1 >$ $\stackrel{\scriptstyle{\scriptstyle{\times}}}{\vdash}$ 0.03 $\stackrel{\scriptstyle{\scriptstyle{\sim}}}{\vdash}$ 0.02 Fisher matrix $F_{ij} = \sum_{i} (2 + Bt_{int}) \frac{\mathrm{d}\log T_{sky}}{\mathrm{d}p_i} \frac{\mathrm{d}\log T_{sky}}{\mathrm{d}p_i}$ $\left(\right)$ 0.010.8 0.9 1.0 1.1 1.2 0.00 -0.010.0 $T_0 - \langle T_0 \rangle$ [K] Δz

Compare with least squares fitting of model to 10⁶ realisations of thermal noise: Good agreement

tint= 500hrs, 50 channels spanning 100-200MHz, 3rd order polynomial

KISS 2010

KISS 2010

Spin temperature evolution

Uncertain high redshift sources

z = 80.4020 10 5 50 0 [] -50 [] -50 [] -50 [] -50 [] -50 [] -50 [] -50 [] -50 [] -50 [] -50 -150100 -20050 0 -1500 =100 -20050 100 250 150 200 ν [MHz]

Properties of first galaxies are very uncertain

Frequencies below 100 MHz probe period of X-ray heating & Lya coupling

Below ~50 MHz ionosphere and RFI probably a killer

Furlanetto 2006 Pritchard & Loeb 2010

Jonathan Pritchard

KISS 2010

Jonathan <u>Pritchard</u>

Constraining turning points

50 channels spanning 40-140 MHz

Experimental requirements

- Global experiments sensitive to sharp reionization histories
- Lower frequencies access onset of X-ray heating
- Performance very sensitive to order of polynomial needed to fit foregrounds and level of residuals
- Position and amplitude of turning points useful parametrization
- Much cheaper than interferometers!
- Key challenges: Calibration and RFI
- Plenty of scope for improved analysis techniques

Jonathan Pritchard

Foreground observations

KISS 2010