Candidacy Talk

Jonathan Pritchard (Caltech) Advisor Marc Kamionkowski

Overview

Tensor modes and the CMB
Spin-kinetic temperature coupling in the 21 cm line
Imprints of reionization in the galaxy power spectrum
Future work

Cosmic microwave background fluctuations from gravitational waves: An analytic approach

> Jonathan Pritchard Marc Kamionkowski (Caltech) Annals of Physics 318 (2005) 2-36

Overview

- Gravitational waves produced during inflation provide a possible probe of the very early universe.
- Much experimental interest in detecting the B mode polarisation signal.
- Analytic understanding of the form of the power spectrum is useful in providing intuition.
- Will describe the various elements that go into calculating the tensor power spectra and describe useful analytic approximations.
- Hope to bring out the physics behind the maths.

The Cosmic Microwave Background

Mechanical coupling of baryons and photons via Thompson scattering ends with recombination
Photons scatter for last time then free-stream to observer
CMB contains frozen snapshot of perturbations at surface of last scattering

Power Spectra

Temperature Anisotropies

•Local distortion of space generates temperature quadrupole

 Decay of gravitational waves after horizon entry leads to net increase in temperature
 "Integrated Sachs-Wolfe Effect" (ISW)

•L=2 quadrupoles

Hu & White 1997

Polarisation of the CMB

•Tensor quadrupole doesn't show axial symmetry -> B mode polarisation

Kamionkowski, Kosowsky & Stebbins 1997 Zaldarriaga & Seljak 1997

Hot

Cold

Line of Sight Formalism

Gravitational Waves

$$\ddot{h}_{ij} + 2\frac{\dot{a}}{a}\dot{h}_{ij} + k^2h_{ij} = 16\pi G a^2\pi_{ij}$$

anisotropic stress +

Freestreaming relativistic particles e.g. neutrinos

Modes enter horizon and decay
Background energy content affects phase at SLS
Anisotropic stress damps amplitude by ~0.8 Weinberg 2003

$$h(k,\tau) \approx A_T \frac{\sin(k\tau + \phi_0)}{a(\tau)}$$

Tight Coupling

- Rapid Thompson scattering couples baryons and photons and prevents the growth of anisotropy
- Recombination -> increasing m.f.p. -> anisotropy grows
- Use large optical depth to simplify Boltzmann equations

$$\dot{\Psi} + \frac{3}{10}\dot{\kappa}\Psi = -\frac{\dot{h}}{10}$$

•If gravitational wave driving term varies slowly over the SLS, i.e. $k\Delta\tau_{R}{<}{<}1,$ then

$$\Psi \propto \dot{h}(au_R) \Delta au_R$$

term of SLS

Phase Damping

On smaller scales, finite size of SLS becomes important
Different regions contribute with different phases
Exponentially suppresses power on small scales

$$\langle \dot{h}(\tau) \rangle = \int_0^{\tau_0} d\tau \, g(\tau) \dot{h}(\tau) \approx \dot{h}(\tau_R) e^{-(k\Delta\tau_R)^2/2}$$

Debye 1909

Analytical Model

Conclusions z=1100

Phase damping important for understanding decline in power on small scales
Projection determines form of the polarisation power spectrum

Inclusion of anisotropic stress suppresses tensor power by ~0.64 on small scales
Approximations reproduce shape of power spectrum with reasonable accuracy Descending from on high: Lyman series cascades and spin-kinetic temperature coupling in the 21cm line

> Jonathan Pritchard Steve Furlanetto (Caltech) astro-ph/0508381 submitted to MNRAS

Overview

- 21cm studies provide a way of probing the first galaxies (Barkana & Loeb 2004)
- Fluctuations in the Lyman α flux lead to 21cm fluctuations via the Wouthysen-Field effect
- Previous calculations have assumed <u>all</u> photons emitted between Lyman β and Lyman limit are converted into Lyman α photons
- Quantum selection rules mean that some photons will be lost due to the 2S->1S two photon decay
- Here consider atomic physics to calculate the details of the cascade process and illustrate the effect on the 21cm power spectra

Thermal History

21cm Fluctuations

•In linear theory, peculiar velocities correlate with overdensities $\delta_{d_r v_r}(k) = -\mu^2 \delta$ Bharadwaj & Ali 2004 •Anisotropy of velocity gradient term allows angular separation $P_{T_b}(\mathbf{k}) = \mu^4 P_{\mu^4} + \mu^2 P_{\mu^2} + P_{\mu^0}$ Barkana & Loeb 2004

Experimental Efforts

- Three main experiments: PAST (NW China), LOFAR (NL) Freq: 80-300 MHz and MWA (SW Australia)
- Large radio arrays using interferometry
- Foregrounds!

The old: large dishes

 $(f_{21cm}=1.4 \text{ GHz})$ MWA: Baselines: 10m-1.5km

LOFAR: Freq: 30-240 MHz Baselines: 100m-100km ~14000 antennae

The new: small dipoles ... & long baselines

Higher Lyman Series

- Two possible contributions
 - Direct pumping: Analogy of the W-F effect
 - Cascade: Excited state decays through cascade to generate Ly α
- Direct pumping is suppressed by the possibility of conversion into lower energy photons
 - Ly α scatters ~10⁶ times before redshifting through resonance
 - Ly n scatters ~1/P_{abs}~10 times before converting
 ⇒ Direct pumping is not significant
- Cascades end through generation of Ly α or through a two photon decay
 - Use basic atomic physics to calculate fraction recycled into Ly $\boldsymbol{\alpha}$
 - Discuss this process in the next few slides...

Hirata 2005

Lyman y

ŶŶ

A

•Cascade via 3S and 3D levels allows production of Lyman α •f_{recycle, γ}=0.26

Lyman δ

ŶŶ

•Going to higher n offers more routes to the 2P level • $f_{recycle,\delta}=0.31$ •Following individual decay paths gets complicated!

Calculating Recycling Fractions

ŶŶ

$$f_{recycle,i} = \sum_{f} P_{if} f_{recycle,f}$$

Hirata 2005

•Iterate from low to high n

Lyman Series Cascades

Fluctuations from the first stars

•Overdense region modifies observed flux from region dV

•Relate Ly α fluctuations to overdensities

 $\delta_{x_{\alpha}}(\mathbf{k}) = W(k)\delta(\mathbf{k})$

• Probe using separation of powers

$$P_{\mu^2}(k) = 2P_{\delta}(k) \left[\beta + \frac{x_{\alpha}}{\tilde{x}_{tot}}W(k)\right]$$

Barkana & Loeb 2004

•Fluctuations independent of density perturbations

Small number statistics

•Different regions see some of the same sources though at different times in their evolution

$$P_{un-\delta}(k) \equiv P_{\mu^0} - \frac{P_{\mu^2}^2}{4P_{\mu^4}} = \left(\frac{x_\alpha}{\tilde{x}_{tot}}\right)^2 \left(P_\alpha - \frac{P_{\delta-\alpha}^2}{P_\delta}\right)$$

Fluctuation Power Spectra

•Excess power probes star formation rate

•Cutoffs from width of 21cm line and pressure support on small scales

Correct atomic physics reduces power by ~0.65 (density) ~0.42 (poisson)

Conclusions z=20

- Including correct atomic physics is important for extracting astrophysical information from 21cm fluctuations
- Cascade generated Lyman α photons increase the theoretical signal, but not as much as has previously been thought
- ~62% emitted Lyman series photons recycled into Lyman $_{\alpha}$
- Recycling fractions are straightforward to calculate and should be included in future work on this topic
- Basic atomic physics encoded in characteristic scales
- 21cm signal can, in principle, be used to probe early star formation

Imprints of reionization in the galaxy power spectrum

Jonathan Pritchard Marc Kamionkowski Steve Furlanetto (Caltech) Work in progress...

Overview

- Formation of the first galaxies changes the IGM affecting the formation of further galaxies
- The galaxy power spectrum may retain an imprint from the effect of ionized regions on galaxy formation
- Use simple model in lieu of detailed physics
- Use the Fisher Matrix formalism to probe this imprint
- Consider effect on determination of cosmological and dark energy parameters

Evidence for Reionization

Gunn-Peterson Trough

Becker et al. 2005

•Universe ionized below z~6, approaching neutral at higher z

• WMAP measurement of $\tau \sim 0.17$

Kogut et al. 2003

Need early star formation to match large optical depth
Integral constraint on ionization history

Patchy Reionization

Ionizing flux from stars creates HII bubbles around galaxies
Eventually bubbles overlap and reionization completes

Galaxy formation and feedback

To get star formation need gas cloud to cool and fragment t_{cool} <t_{dyn} <t_{hubble}
Feedback from first stars complicates matters:
-radiation, winds, metal pollution
Here ignore the details and parameterise our ignorance

$$n_{\text{gal}}(x) = \bar{n} \left[1 + b\delta(x) + \epsilon_b f(x) \right]$$

bias

ionized fraction

Bubble Model

•Halo model approach to bubble power spectrum + single bubble size $P^{1b}(k) = \epsilon_b^2 \bar{Q} V_{bub} |u(k|R_b)|^2$

•Bubble sizes? - Unclear

•R~10Mpc

Furlanetto, Zaldarriaga, Hernquist 2004

•R~60Mpc

Wyithe and Loeb 2005

Probing Dark Energy

Baryon Oscillations

Same acoustic oscillations as seen in the CMB
Constrains angular diameter distance D_A

Seo & Eisenstein 2005

•Constrains HD_A

Alcock & Paczynski 1979

The Fisher Matrix

• Estimate curvature of likelihood

 $F_{\alpha\beta} = -\left\langle \frac{\partial^2 \log L}{\partial \theta_{\alpha} \partial \theta_{\beta}} \right\rangle.$ Fisher 1935

•Likelihood describes distribution of model parameters

•Cramer-Rao inequality: $\sigma_{\alpha} \geq \sqrt{(F^{-1})_{\alpha\alpha}}$

•Depends only on theoretical model and experimental specifications

$$F_{\alpha\beta}^{CMB} = \sum_{\ell} \sum_{X,Y} \frac{\partial C_{\ell}^{X}}{\partial \theta_{\alpha}} (\operatorname{Cov}_{\ell})_{XY}^{-1} \frac{\partial C_{\ell}^{Y}}{\partial \theta_{\alpha}}$$
$$F_{\alpha\beta}^{gal} = \int_{k_{\min}}^{k_{\max}} \frac{d^{3}k}{(2\pi)^{3}} \frac{\partial \ln P(k)}{\partial \theta_{\alpha}} \frac{V_{\text{eff}}(k)}{2} \frac{\partial \ln P(k)}{\partial \theta_{\beta}}$$

Tegmark 1997

Galaxy Surveys

SDSS LRG

• $z\sim0.3$ •Luminous Red Galaxies • $n\sim10^{-4}$ (h^{-1} Mpc)⁻³ • $V_{survey}=1.0$ (h^{-1} Gpc)³

Survey 2 • $z\sim3.0$ •Lyman Break Galaxies • $n\sim10^{-3}$ ($h^{-1}Mpc$)⁻³ • $V_{survey}=0.5$ ($h^{-1}Gpc$)³

$$V_{\text{eff}}(k,\mu) = \int \left[\frac{n(r)P(k,\mu)}{n(r)P(k,\mu)+1}\right]^2 V_{\text{survey}}$$

Approach Summary

Uncertainties on cosmological and bubble model parameters

•Use these to probe effect of bubbles on galaxy power spectrum

Possibilities for Detection

Dark Energy Uncertainties

 Uncertainties increased for bubbles with r_{bub}~65Mpc
 most degenerate with matter power spectrum
 Small effect ~30% increase at most

Conclusions z=3

- Future galaxy surveys should be able to place interesting constraints on the effect of ionization regions on galaxy formation
- Bubbles shouldn't provide a major source of noise when attempting to constrain dark energy parameters
- Some numerical issues need to be addressed
- Need to explore different shapes for bubble power spectrum
- Have explored statistical errors from including bubbles, but there will be a systematic change in maximum likelihood parameters as well. How can this be quantified?
- Toy model used would be nice to make a connection to the underlying physics e.g. Babich & Loeb 2005

Inhomogeneous X-ray Heating

Jonathan Pritchard Steve Furlanetto (Caltech) Proposed work...

Inhomogeneous X-ray heating

- X-rays are responsible for heating the IGM above the CMB temperature
- Heating usually assumed to be uniform
- Simplistic, fluctuations may lead to observable 21cm signal
- Analogous to Lyα fluctuations

Calculation

- Model star formation to calculate X-ray flux variation (Barkana & Loeb 2005)
- Convert X-ray flux to temperature perturbations (Shull & Van Steenberg 1985)
- Calculate resulting 21cm T_b signal
- Compare with temperature variation from overdense regions e.g. from photo-ionization equilibrium (Nasser 2005)

Future work z=0

- Inhomogeneous X-ray heating as a source of 21 cm brightness temperature fluctuations
- Graduate June 2007!