Galaxy Formation, Cosmology, and the Epoch of Reionization with the SKA

SKA Science Priorities

Science			SWG
Goal	SWG	Objective	Rank
1	CD/EoR	Physics of the early universe IGM - I. Imaging	1/3
2	CD/EoR	Physics of the early universe IGM - II. Power spectrum	2/3
4	Pulsars	Reveal pulsar population and MSPs for gravity tests and Gravitational Wave detection	1/3
5	Pulsars	High precision timing for testing gravity and GW detection	1/3
13	HI	Resolved HI kinematics and morphology of ~10^10 M_sol mass galaxies out to z~0.8	1/5
14	HI	High spatial resolution studies of the ISM in the nearby Universe.	2/5
15	HI	Multi-resolution mapping studies of the ISM in our Galaxy	3/5
18	Transients	Solve missing baryon problem at z~2 and determine the Dark Energy Equation of State	=1/4
22	Cradle of Life	Map dust grain growth in the terrestrial planet forming zones at a distance of 100 pc	1/5
27	Magnetism	The resolved all-Sky characterisation of the interstellar and intergalactic magnetic fields	1/5
32	Cosmology	Constraints on primordial non-Gaussianity and tests of gravity on super-horizon scales.	1/5
33	Cosmology	Angular correlation functions to probe non-Gaussianity and the matter dipole	2/5
37 + 38	Continuum	Star formation history of the Universe (SFHU) – I+II. Non-thermal & Thermal processes	1+2/8

SKA Science Priorities

Science Goal	SWG	Objective	SWG Rank		
1	CD/EoR	Physics of the early universe IGM - I. Imaging	1/3		
2	CD/EoR	Physics of the early universe IGM - II. Power spectrum	2/3		
		Pulsars			
13	НІ	Resolved HI kinematics and morphology of ~10^10 M_sol mass galaxies out to z~0.8	1/5		
-		HI: Local ISM measurements			
Cradle of Life/Magnetism/Transients					
32	Cosmology	Constraints on primordial non-Gaussianity and tests of gravity on super-horizon scales.	1/5		
33	Cosmology	Angular correlation functions to probe non-Gaussianity and the matter dipole	2/5		
37 + 38	Continuum	Star formation history of the Universe (SFHU) – I+II. Non-thermal & Thermal processes	1+2/8		

Extra galactic astronomy is a huge part of the SKA science case

Track evolution of HI from present day to 100 Myr after Big Bang (z=27)

21cm line 1420/(1+z) MHz

SKA-LOW 50-350MHz z=3-27

SKA-MID Band 1: 350-1050MHz z=0.35-3 Band 2 950-1760 MHz z=0-0.5

SKA-SUR Band 1: 350-900MHz z=0.6-3 Band 2: 650-1670 MHz z=0-1.2

Imperial College

SKA-LOW targets EoR signal at 50MHz-250MHz

Western Australia.

Log-periodic dipoles

Chair: Leon Koopmans

UK: Jonathan Pritchard Fil Abdalla Ilian Iliev Emma Chapman Anna Bonaldi Mike Jones Pratika Dayal

UK-SKA RAS 2014

Imperial College

Existing observations leaves much unanswered Possible hints of neutral hydrogen at z~7, e.g. z=7 QSO, LAE/LBG ratio

By 2020: possible advances...

- I) Planck polarisation could constrain redshift and duration of reionization
- 2) HST+JWST will have observed bright end of luminosity function to z~12 (faint end will still be incomplete; connection to ionizing photons may still be unclear)
- 3) Little advance in QSO (more at $z \sim 7$) wait for Euclid in 2020 to push to $z \sim 8$
- 4) LAE surveys into EoR will be more advanced (HSC) maybe clustering => patchy reionization?

SKA will map out details of reionization and cosmic dawn

UK-SKA RAS 2014

- 21 cm fluctuations contain wealth of information
 - Lyman alpha fluctuations => star formation rate and first galaxies

Imperial College

- Temperature fluctuations => X-ray sources and first black holes
- Neutral fraction fluctuations => topology of reionization
- Density fluctuations => cosmology

- 21 cm fluctuations contain wealth of information
 - Lyman alpha fluctuations => star formation rate and first galaxies

Imperial College

- Temperature fluctuations => X-ray sources and first black holes
- Neutral fraction fluctuations => topology of reionization
- Density fluctuations => cosmology

- 21 cm fluctuations contain wealth of information
 - Lyman alpha fluctuations => star formation rate and first galaxies

Imperial College

- Temperature fluctuations => X-ray sources and first black holes
- Neutral fraction fluctuations => topology of reionization
- Density fluctuations => cosmology

- 21 cm fluctuations contain wealth of information
 - Lyman alpha fluctuations => star formation rate and first galaxies

Imperial College

- Temperature fluctuations => X-ray sources and first black holes
- Neutral fraction fluctuations => topology of reionization
- Density fluctuations => cosmology

- 21 cm fluctuations contain wealth of information
 - Lyman alpha fluctuations => star formation rate and first galaxies

Imperial College

- Temperature fluctuations => X-ray sources and first black holes
- Neutral fraction fluctuations => topology of reionization
- Density fluctuations => cosmology

- 21 cm fluctuations contain wealth of information
 - Lyman alpha fluctuations => star formation rate and first galaxies

Imperial College

- Temperature fluctuations => X-ray sources and first black holes
- Neutral fraction fluctuations => topology of reionization
- Density fluctuations => cosmology

Imperial College London

- 21 cm fluctuations contain wealth of information
 - Lyman alpha fluctuations => star formation rate and first galaxies
 - Temperature fluctuations => X-ray sources and first black holes
 - Neutral fraction fluctuations => topology of reionization
 - Density fluctuations => cosmology

Imperial College London

- 21 cm fluctuations contain wealth of information
 - Lyman alpha fluctuations => star formation rate and first galaxies
 - Temperature fluctuations => X-ray sources and first black holes
 - Neutral fraction fluctuations => topology of reionization
 - Density fluctuations => cosmology

UK-SKA RAS 2014

llege

Evolution of the power spectrum

Imperial College

Measure power spectrum from z=27 to z~6 =>traces onset of star formation and IGM heating

UK-SKA RAS 2014

@jr_pritchard

Evolution of the power spectrum

Imperial College

Measure power spectrum from z=27 to z~6 =>traces onset of star formation and IGM heating

UK-SKA RAS 2014

@jr_pritchard

Key Science: Map neutral hydrogen in IGM at z=6-27

(Universe 100MYr-1GYr old)

 3D imaging of ionized regions during reionization
 Power spectrum measurements to constrain X-ray emission and SFR of first galaxies via spin-temperature fluctuations

3) 21cm forest towards radio bright high-z sources e.g. Quasars probes small scale structures

4) Cosmology from density field, weak lensing, thermal history

Imperial College

Chair: Roy Maartens (Cape 1000)

Fil Abdalla (UCL) Matt Jarvis (Oxford) Mike Brown (Manchester) David Bacon (Portsmouth) Jonathan Pritchard (Imperial)

Heavy elements 0.03% Neutrinos 0.3% Stars 0.5% H + He gas 4% Dark matter 20% Dark Energy 75%

ege

HI GALAXY REDSHIFT SURVEY •SKA1 – z<0.5 •SKA2 – z<2

HI INTENSITY MAPPING SURVEY •SKA1 – 30000 deg² , z<3 •SKA2 – 30000 deg² , z<5

SKA1 ~ 10⁷ galaxies over 5,000 deg² SKA2 ~ 10⁹ galaxies over 30,000 deg² CONTINUUM SURVEY

SKA1 – 100 million
galaxies, 30000 deg²
SKA2 – 2 billion galaxies, 30000 deg²

See: Bull, Ferreira, Patel, Santos, 2014 (arXiv: 1405.1452)

SKA Euclid Boss Chubte Comoving distance

following slides adapted from Abdalla

Intensity mapping

SKA1 auto-correlations

- Problem: not enough short baselines (need ~ 20 m for BAO)
- Solution: use each dish as a single telescope (autocorrelation)
- "Like 254 GBT dishes but with less resolution"
- Save the interferometer data (complement small scales)

Scales probed by SKA1 (15m dishes)

z ~ 1

Imperial College

UK-SKA RAS 2014

@jr_pritchard

Imperial College

Cosmolo

SKAI:

- I) HI Intensity mapping survey
 - BAO & RSD up to z~3
 - constraints on DE and curvature
 - probe largest scales Non-Gaussianity, modified gravity
- 2) HI galaxy redshift survey precise RSD to z<0.5
- 3) Continuum survey
 - Ist large-scale weak lensing survey in radio
 - test isotropy of the Universe
 - tight constraints on non-Gaussianity

SKA2:

- HI redshift survey (billion galaxy survey) will be state of art
- Radio lensing competative with optical e.g. Euclid

General:

Radio gives different systematics to optical/IR

Continuum surveys

Imperial College London

HI & Galaxy evolution: Matt Bothwell Continuum Science: Rob Beswick, Philip Best, Elias Brinks, Matt Jarvis, Mark Sargent, Richard Schilizzi, Elizabeth Stanway

following slides adapted from Jarvis

UK-SKA RAS 2014

@jr_pritchard

Study interplay between AGN-galaxy growth e.g. feedback At nJy sensitivity detect normal star forming galaxies Lradio-SFR correlation avoids issues of other tracers e.g. dust

UK-SKA RAS 2014

Key HI Science

HI and galaxy evolution

Resolved studies of HI emission in and around galaxies out to $z \sim 1$, i.e. from Now to ~8 Gyr ago. Current work is out to z=0.2. Pathfinders will cover this redshift range, but will not resolve galaxies.

Unresolved statistical studies (emission & absorption) beyond 8 Gyr

Will provide, for large part of the life span of the Universe, information about the cold-gas in galaxies and their environment for multi-wavelength, multi-archive studies of galaxies evolution.

Star formation declined factor 10 over this period

WHY???

Stolen from Tom Oosterloo

(c) dW (LV (Units) (LV (Units)) (LV (Units))

Fig. 2. A simple representation of our current knowledge of the rise and fall of globally averaged star-formation activity over the 13.7 billion years of cosmic history.

UK SKA Science Committee Commune Meeting

SKA with sub-arcsec resolution resolves galaxies in continuum & HI at z<1; count them out to higher redshift

Trace evolution of star formation back to EoR without dust obscuration issues

Connect galaxies to LCDM in detail e.g. HoD modeling z<4

Tracing neutral hydrogen pins down origin of gas used for SF (with ALMA get neutral-H > molecular-H > SF)

Multi-wavelength data critical. Huge mutual benefits from combining HI & continuum with Euclid & LSST (VISTA-MOST)

Clusters, strong lensing, ...

EoR:

- 50-250MHz key to see cosmic dawn & reionization
- few arcmin resolution & mK sensitivity

Cosmology:

- high sensitivity & survey speed at <1.2GHz key
- ~0.5 arcsec resolution needed for radio weak lensing, RG separation into types for use as different bias tracers

HI/Continuum:

- High sensitivity on I-10 arcsec scales at <1420MHz
- MID somewhat better than SUR since angular resolution & sensitivity matter more than FoV for deep fields
- HI would prefer a single band covering 650-1420MHz (break in MID bands)

Conclusions

SKA will trace galaxy formation across cosmic time

- HI & Continuum resolved images of galaxies z<1
- HI & Continuum surveys to z~<3 4
- 21 cm imaging during reionization z~6 12
- 21cm fluctuations during cosmic dawn z~12 27

SKA-LOW opens a new window into early Universe - trace star-formation history, X-ray sources, reionization

SKA-MID & SKA-SUR enable large area surveys excellent for cosmology - dark energy, non-Gaussianity, curvature

- HI spectroscopic+continuum survey for BAO, RSD & lensing
- 21 cm intensity mapping for BAO & largest scales

nJy sensitivity enables continuum surveys that see normal star-forming galaxies to trace AGN-galaxy connection & SF history

Resolved HI images at z<I connect galaxies to LCDM & DM halos

UK-SKA RAS 2014

Fin

Foreground removal

Foregrounds ~ 10³ signal

Foreground removal challenging, but exploiting spectral smoothness of foregrounds seems effective Various techniques e.g. ICA, GMCA, ... Chapman+ 2013

UK-SKA RAS 2014

Imperial College

