Probing the cosmic dark ages using the 21 cm line

Jonathan Pritchard
(Caltech)

Collaborators: Steve Furlanetto (Yale)
Marc Kamionkowski (Caltech)

Particle Physics and Cosmology: The Fabric of Spacetime
Les Houches Summer School 2006
Overview

• 21 cm line as probe of the “Dark Ages”

• “Gastrophysics”
 ▪ First luminous sources
 ▪ IGM thermal history
 ▪ Reionization
 (reasonable soon)

• Cosmology
 ▪ Density power spectrum
 ▪ BBN - D/H
 ▪ Dark matter decay
 (more speculative)
21 cm basics

- **HI hyperfine structure**

 \[
 n_1 / n_0 = 3 \exp(-h\nu_{21\text{cm}}/kT_s)
 \]

- **Use CMB backlight to probe 21cm transition**

 \[
 T_b = 27x_{\text{HI}}(1 + \delta_b) \left(\frac{T_S - T_\gamma}{T_S} \right) \left(\frac{1 + z}{10} \right)^{1/2} \text{ mK}
 \]

- **3D tomography possible - angles + frequency**

- **21 cm brightness temperature**

- **21 cm spin temperature**

- **Coupling mechanisms:**
 - Radiative transitions (CMB)
 - Collisions
 - Wouthysen-Field
Wouthysen-Field effect

Hyperfine structure of HI

\[x_\alpha \propto J_\alpha \]

Effective for \(J_\alpha > 10^{-21} \text{erg/s/cm}^2/\text{Hz/sr} \)

\[T_s \sim T_\alpha \sim T_k \]

W-F recoils

\[n_F L_J \]

\[1_1S_{1/2} \]

\[1_0S_{1/2} \]

Field 1959

Lyman \(\alpha \)
Thermal History

The diagram illustrates the thermal history of the universe with key temperature markers and processes:

- **TS**: Temperature of the universe
- **Tk**: Temperature of the cosmic microwave background (CMB)
- **X-ray heating**: Heating process due to X-rays
- **Adiabatic cooling**: Cooling process without heat exchange
- **Thermal Coupling**: Process involving thermal exchange
- **Lya coupling**: Coupling process involving Lyα
- **Collisional coupling**: Coupling process involving collisions

The graph shows changes in temperature (T) over redshift (z), with phases of reionization and cosmic microwave background (CMB) depicted.
$\delta T_b \equiv \beta \delta + \beta_x \delta x_{HI} + \beta_T \delta T_k + \beta_\alpha \delta_\alpha - \delta_\partial \nu$

Cosmology Reionization X-ray sources Lyα sources Cosmology

Collisionally coupled regime

No 21 cm signal
Experimental efforts

LOFAR: Netherlands
Freq: 120-240 MHz
Baselines: 100m-100km

MWA: Australia
Freq: 80-300 MHz
Baselines: 10m-1.5km

PAST: China
Freq: 70-200 MHz

SKA: ???
Freq: 60 MHz-35 GHz
Baselines: 20m-3000km

Foregrounds are the big problem!
First Sources

\[\Delta = \frac{k^3 P(k)}{2\pi^2} \]

Gas temperature fluctuations

Ly\(\alpha\) flux fluctuations

- trough if \(T_K < T_\gamma\): competition between density and temperature fluctuations
- Probe thermal history
- power spectrum sensitive to sources of Ly\(\alpha\) photons
- Probe first sources

Pritchard & Furlanetto 2005 + 2006
Reionization

- Main target of first experiments
 - $Z=12$

- HII regions grow around sources
- Characteristic size imprinted in 21 cm power spectrum
- Also get evolution of ionized fraction

Furlanetto, Sokasian, Hernquist 2003

Furlanetto, Oh, Briggs 2006
Density power spectrum

- 21 cm fluctuations probe density fluctuations
- Non-linear scale is smaller at high red-shift
- Smaller scales accessible than for galaxy surveys
- Independent cross-check on cosmological parameters
- Moderate gains on CMB constraints possible with SKA

<table>
<thead>
<tr>
<th>τ</th>
<th>Ω_w</th>
<th>w</th>
<th>$\Omega_m h^2$</th>
<th>$\Omega_b h^2$</th>
<th>n_s</th>
<th>$\sigma_8 \times 10^5$</th>
<th>χ^2</th>
<th>α_s</th>
<th>Ω_ν</th>
<th>Θ_H</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOFAR</td>
<td>0.09</td>
<td>-1.0</td>
<td>0.14</td>
<td>0.04</td>
<td>0.14</td>
<td>3.9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MWA</td>
<td>0.10</td>
<td>-</td>
<td>0.13</td>
<td>0.03</td>
<td>0.13</td>
<td>3.9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MWA5000</td>
<td>0.007</td>
<td>-</td>
<td>0.011</td>
<td>0.003</td>
<td>0.03</td>
<td>0.31</td>
<td>0.012</td>
<td>0.008</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SKA</td>
<td>0.005</td>
<td>-</td>
<td>0.011</td>
<td>0.003</td>
<td>0.06</td>
<td>0.42</td>
<td>0.017</td>
<td>0.016</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SKAc</td>
<td>0.14</td>
<td>-</td>
<td>0.051</td>
<td>0.003</td>
<td>0.07</td>
<td>2.4</td>
<td>0.020</td>
<td>0.09</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SKA*</td>
<td>0.005</td>
<td>-</td>
<td>0.009</td>
<td>0.002</td>
<td>0.04</td>
<td>0.26</td>
<td>0.011</td>
<td>0.009</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MWA50K*</td>
<td>0.002</td>
<td>-</td>
<td>0.005</td>
<td>0.001</td>
<td>0.04</td>
<td>0.11</td>
<td>0.004</td>
<td>0.005</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CCMB</td>
<td>0.060</td>
<td>0.084</td>
<td>0.017</td>
<td>0.0014</td>
<td>0.072</td>
<td>0.29</td>
<td>0.039</td>
<td>0.12</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CCMB+ MWA</td>
<td>0.058</td>
<td>0.058</td>
<td>0.011</td>
<td>0.0012</td>
<td>0.031</td>
<td>0.22</td>
<td>0.025</td>
<td>0.03</td>
<td>0.2</td>
<td>-</td>
</tr>
<tr>
<td>CCMB+ MWA5000</td>
<td>0.049</td>
<td>0.007</td>
<td>0.003</td>
<td>0.0009</td>
<td>0.013</td>
<td>0.18</td>
<td>0.006</td>
<td>0.005</td>
<td>0.06</td>
<td>-</td>
</tr>
<tr>
<td>CCMB+ SKA</td>
<td>0.049</td>
<td>0.005</td>
<td>0.003</td>
<td>0.0009</td>
<td>0.014</td>
<td>0.18</td>
<td>0.005</td>
<td>0.007</td>
<td>0.06</td>
<td>-</td>
</tr>
<tr>
<td>Planck</td>
<td>0.0050</td>
<td>0.029</td>
<td>0.09</td>
<td>0.0023</td>
<td>0.00018</td>
<td>0.0047</td>
<td>0.026</td>
<td>0.008</td>
<td>0.010</td>
<td>-</td>
</tr>
<tr>
<td>Planck + MWA5000</td>
<td>0.0046</td>
<td>0.019</td>
<td>0.007</td>
<td>0.00011</td>
<td>0.000013</td>
<td>0.0034</td>
<td>0.018</td>
<td>0.003</td>
<td>0.003</td>
<td>0.05</td>
</tr>
<tr>
<td>Planck + SKA</td>
<td>0.0046</td>
<td>0.022</td>
<td>0.08</td>
<td>0.0009</td>
<td>0.00013</td>
<td>0.0034</td>
<td>0.018</td>
<td>0.003</td>
<td>0.004</td>
<td>0.05</td>
</tr>
<tr>
<td>Planck + SKA*</td>
<td>0.0046</td>
<td>0.018</td>
<td>0.07</td>
<td>0.0009</td>
<td>0.00013</td>
<td>0.0033</td>
<td>0.018</td>
<td>0.003</td>
<td>0.004</td>
<td>0.05</td>
</tr>
<tr>
<td>Planck + MWA50K*</td>
<td>0.0045</td>
<td>0.008</td>
<td>0.03</td>
<td>0.0004</td>
<td>0.00010</td>
<td>0.0020</td>
<td>0.015</td>
<td>0.002</td>
<td>0.001</td>
<td>0.02</td>
</tr>
</tbody>
</table>

<-- Optimistic improve n_s and Ω_ν most

McQuinn et al. 2006
• Deuterium also has hyperfine structure
 \(\lambda_D = 91.6\text{cm} \)
 \(\lambda_H = 21.1\text{cm} \)

• Cross-correlate signal pixels at two wavelengths to extract D/H ratio
 \(\lambda_1 = \lambda_H (1+z) \)
 \(\lambda_2 = \lambda_D (1+z) \)
 \(= \lambda_1 \ast (\lambda_D / \lambda_H) \)

• Measure primordial D/H ratio to 1% level
• Technically challenging and well beyond currently proposed experiments
Dark matter decays

- Some dark matter candidates can decay during dark ages
 DM lifetime $\sim 10^{17}-10^{20}$ years \(\text{i.e. } \Gamma \ll H_0\)
 e.g. sterile neutrinos with $m\sim 2-4$ keV
 axinos with $m\sim 1-100$ GeV
- Energetic photons produced heat and ionize the IGM
- Detect resulting 21 cm fluctuations
- Constrain DM parameter space

Furlanetto, Oh, Pierpaoli 2006

- Also technically demanding and far in the future
Conclusions

• 21 cm signal contains an enormous wealth of information…
 … the trick is separating it all out
• Best region for doing cosmology is z>30, but also hardest to observe
• At z<30, “gastrophysics” tends to obscure cosmology but is interesting in its own right
• 21 cm should provide moderate gains in cosmological parameters in the next decade or so
• Very early days yet and still unclear what will and will not be possible
• Foregrounds are still a largely unresolved issue

Recent review: Furlanetto, Oh, Briggs (2006)
astro-ph/0608032